Machine Shop Reports

Machining OEE

Availability = Run Time / Planned Production Time X 100

Planned Production Time = Sum of required time in production

Stop Time = Addition of downtime from production

Run Time = Planned production time - Stop Time


Quality= Good Count / Total Count X 100

Total Count = Sum of total quantity from child table "QTY Details"

Rejection Count = Sum of rejection from QTY details includes CR, MR, RW, etc.

Good Count = Total Count - Rejection Count


Performance = Ideal Cycle Time X Total Count / Run Time X 100

Ideal Cycle Time = Total Cycle time of that machine

Total Count = Sum of total quantity from child table "QTY Details"

Run Time= Planned production time - Stop Time



SIMPLE OEE CALCULATION

The simplest way to calculate OEE is as the ratio of Fully Productive Time to Planned Production Time. Fully Productive Time is just another way of saying manufacturing only Good Parts as fast as possible (Ideal Cycle Time) with no Stop Time. The simple calculation of OEE is:

OEE = (Good Count × Ideal Cycle Time) / Planned Production Time

Although this is an entirely valid calculation of OEE, it does not provide information about the three loss-related factors: Availability, Performance, and Quality. For that – we use the preferred calculation.

PREFERRED OEE CALCULATION

The preferred OEE calculation is based on the three OEE Factors: Availability, Performance, and Quality.


Image of OEE formula multiplying Availability, Performance, and Quality

OEE is calculated by multiplying the three OEE factors: Availability, Performance, and Quality.

Availability

Availability takes into account all events that stop planned production long enough where it makes sense to track a reason for being down (typically several minutes).

Availability is calculated as the ratio of Run Time to Planned Production Time:

Availability = Run Time / Planned Production Time

Run Time is simply Planned Production Time less Stop Time, where Stop Time is defined as all time where the manufacturing process was intended to be running but was not due to Unplanned Stops (e.g., Breakdowns) or Planned Stops (e.g., Changeovers).

Run Time = Planned Production Time − Stop Time

Performance

Performance takes into account anything that causes the manufacturing process to run at less than the maximum possible speed when it is running (including both Slow Cycles and Small Stops).

Performance is the ratio of Net Run Time to Run Time. It is calculated as:

Performance = (Ideal Cycle Time × Total Count) / Run Time

Ideal Cycle Time is the fastest cycle time that your process can achieve in optimal circumstances. Therefore, when it is multiplied by Total Count the result is Net Run Time (the fastest possible time to manufacture the parts).

Since rate is the reciprocal of time, Performance can also be calculated as:

Performance = (Total Count / Run Time) / Ideal Run Rate

Performance should never be greater than 100%. If it is, that usually indicates that Ideal Cycle Time is set incorrectly (it is too high).

Quality

Quality takes into account manufactured parts that do not meet quality standards, including parts that need rework. Remember, OEE Quality is similar to First Pass Yield, in that it defines Good Parts as parts that successfully pass through the manufacturing process the first time without needing any rework.

Quality is calculated as:

Quality = Good Count / Total Count

This is the same as taking the ratio of Fully Productive Time (only Good Parts manufactured as fast as possible with no Stop Time) to Net Run Time (all parts manufactured as fast as possible with no stop time).

OEE Formula

OEE takes into account all losses, resulting in a measure of truly productive manufacturing time. It is calculated as:

OEE = Availability × Performance × Quality

If the equations for Availability, Performance, and Quality are substituted in the above and reduced to their simplest terms, the result is:

OEE = (Good Count × Ideal Cycle Time) / Planned Production Time

This is the “simplest” OEE calculation described earlier. And, as described earlier, multiplying Good Count by Ideal Cycle Time results in Fully Productive Time (manufacturing only Good Parts as fast as possible, with no Stop Time).